
Differenzierbares Rendern für
Computer-Tomographie

Rekonstruktion

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Aleksandar Vucenovic
Matrikelnummer 01635282

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dr.techn. Dipl.-Ing. Thomas Auzinger, PhD

Dr.techn. Dipl.-Ing. Christoph Heinzl, Universität Passau

Wien, 4. September 2022
Aleksandar Vucenovic Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Differential Rendering for
Computed Tomography

Reconstruction

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Aleksandar Vucenovic
Registration Number 01635282

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dr.techn. Dipl.-Ing. Thomas Auzinger, PhD

Dr.techn. Dipl.-Ing. Christoph Heinzl, Universität Passau

Vienna, 4th September, 2022
Aleksandar Vucenovic Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Aleksandar Vucenovic

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. September 2022
Aleksandar Vucenovic

v

Danksagung

An dieser Stelle möchte ich mich bei Thomas Auzinger und Christoph Heinzl bedanken,
die mich während des Verfassens dieser Arbeit dabei unterstützt haben und mir bei
Blockaden die richtige Richtung und wertvolle Hinweise für das Überhürden dieser gegeben
haben. Weiters gilt ein großes Danke an meine Familie, die mich stets während meines
Studiums emotional und finanziell unterstützt hat.

vii

Acknowledgements

At this point I would like to thank Thomas Auzinger and Christoph Heinzl, who supported
me during the writing of this work and gave me the right direction and valuable hints
for overcoming blockades. Furthermore, a big thank-you goes to my family, who have
always supported me emotionally and financially during my studies.

ix

Kurzfassung

Die kürzlich erreichte Differenzierbarkeit von Path-Tracing-Algorithmen, die der Standard
für die Erzeugung fotorealistischer Bilder sind, eröffnet Optimierungsmöglichkeiten für
die 3D-Rekonstruktion eines Objekts anhand von Bildern, die durch Röntgenaufnahmen
gewonnen wurden. Die Rekonstruktion erfolgt durch „Invertierung der Rendering Pi-
peline“, was in der Praxis bedeutet, dass 3D-Szenenparameter wie z.B. volumetrische
Daten aus 2D-Bildern gewonnen werden. Die Bilder dienen als Referenz für unseren
Algorithmus, der die Parameter der Szene so lange optimiert, bis sich das von der geren-
derten Szene aufgenommene Bild nur noch minimal vom Referenzbild unterscheidet. In
dieser Veröffentlichung stellen wir ein Proof-of-Concept und erste Experimente für das
differenzierbare Rendering für die CT-Rekonstruktion vor. Unsere Implementierung ist
in der Lage, die Geometrie und das Volumen von Proben erfolgreich zu rekonstruieren,
wobei nur Bilder verwendet werden, die von einem software-simulierten Röntgenscan
stammen.

xi

Abstract

The recently achieved differentiability of path-tracing algorithms, which are the standard
for generating photo-realistic images, opens up optimization possibilities for the 3D-
reconstruction of an object using images acquired by X-ray scans. The reconstruction is
accomplished by ”inverting the rendering pipeline”, which in practice means obtaining 3D
scene parameters, such as volumetric data, from 2D images. The images act as a reference
in our algorithm, which is optimizing the scene parameters until the image acquired
by our rendered scene minimally differs from the reference image. In this publication,
we represent a proof-of-concept and early experiments for differential rendering for CT
reconstruction. Our implementation is able to successfully reconstruct the geometry and
volume of specimens, using only images acquired from a software-simulated X-ray scan.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 3
2.1 Computed Tomography Simulation . 3
2.2 CT Reconstruction . 4
2.3 Differentiable Rendering . 7

3 Methodology 9
3.1 X-Ray Spectrum . 9
3.2 Path Tracing . 11
3.3 Participating Media . 12
3.4 Volume Rendering . 13
3.5 Differentiable Rendering . 13
3.6 Differentiable Rendering for CT Reconstruction 15

4 Implementation 17
4.1 Scene Setup . 18
4.2 X-ray Spectrum . 18
4.3 Detector . 18
4.4 Reference Creation . 19
4.5 Rendering Parameters . 19
4.6 ADAM Optimization . 20
4.7 Reconstruction . 20

5 Evaluation 23
5.1 Specifications . 23
5.2 Results . 23

xv

6 Conclusions 31

7 Future Work 33

List of Figures 35

List of Tables 37

List of Algorithms 39

Bibliography 41

CHAPTER 1
Introduction

X-ray computed tomography (CT) is a widely-used and powerful imaging technique in
industrial and medical applications since its emergence [CDL18]. Setting up CT scans
physically demands extreme precision and can be very time consuming, especially if
working with industrial CT. The parametrization of machines alone can take up to
hours, and often needs to be done empirically by professionals who are familiar with
the technology and surrounding theory. Considering this and how expensive a CT scan
can be, software simulations of CT environments enable a cheap and fast alternative
for the parametrization of CT scans in order to produce reliable results. Furthermore,
the complex process of computed tomography reconstruction - using X-ray attenuation
measurements for the reconstruction of volumetric data - is constantly being improved
by new breakthroughs and research in the fields of physics, graphics, and computer
science/engineering.

There have been many different developments in the history of CT reconstructions [LK20]
[LWA+15] [FB11] [WN19]. While iterative algorithms [Sti18] were experimented with
in the early days of the technology, analytical methods such as filtered-backprojection
algorithms (commonly referred to as FBP) [SKT+20] [WN19] are computationally much
less expensive. Therefore they are used in clinical environments. The use of iterative
algorithms for CT-imaging, e.g., Deep Learning frameworks [WN19] [LK20], has been
facilitated due to the constant increase of computational power in recent years achieved by
parallel algorithms running on dedicated hardware. While a lot of improvements can be
credited to hardware related innovations, performance and accuracy optimizations have
also been made through new advancements in data-processing algorithms and software
architectures [WN19].

One such novel approach is presented in this paper, which is using the recently achieved
differentiability of the path-tracing algorithms [NDVZJ19] [WW22] [LADL18] [GCG+20]
[ZDDZ21] to achieve precise results. By inverting the rendering pipeline used to generate
images from of a set of input parameters (such as surfaces, cameras, lights, ...), we can use

1

1. Introduction

the attenuation data as provided by X-ray scans to reconstruct those input parameters -
namely, the heterogeneous volumetric object being scanned. Our research is a preliminary
exploration of the new possibilities arising from this technology.

Chapter 2 will briefly describe related work in the fields of computed tomography
simulation, reconstruction and differentiable rendering. In particular, the publications
mentioned in the previous section will be summarized in more detail. Furthermore,
in Chapter 3, we describe the methodology and theory behind our implementation.
Chapter 4 deals with the implementation itself, and in Chapter 5 we present the results.
Furthermore, we evaluate the results in Chapter 6, and give some ideas for future work
in Chapter 7.

2

CHAPTER 2
Related Work

To get an idea of the underlying methods and technologies being used to achieve our
results, we briefly describe related works in the fields of CT simulation, CT reconstruction,
and differentiable rendering. This should give the reader a general idea about different
approaches to reconstructing CT scans, while also showcasing possible usages of inverse
rendering for heterogeneous volume data reconstruction in different and related fields.
Furthermore, a short description of differential render engines, which could potentially
be used to achieve our results is presented in this chapter.

2.1 Computed Tomography Simulation

CT simulation can be described as a tool or a set of tools for modelling the process of
CT imaging purely via dedicated software. As already mentioned in Chapter 1, software-
based simulations provide huge benefits such as a less time-consuming and less complex
setup, easier way of parametrization of the scan and easier reproducibility compared to
an analogous scan, as the latter requires expertise in setting up a hardware-device and
approval of use. To make sense of how a CT simulation works, one must first understand
the basic principles of a CT scan and the various elements at play.

A CT scanner usually consists of at least three components: The X-ray source, the
specimen, and the detector. The X-ray source is responsible for generating the X-ray
spectrum and penetrating the specimen with photons, while the detector is used to
acquire how much energy was absorbed by the specimen. The obtained data can further
be used for CT imaging/reconstruction. A schematic representation can be seen in Figure
2.1. Software simulations of computed tomography scans usually provide some parameters
and control over the modelling of these components. Furthermore, simulations have to
deal with the modelling of the physics at play when X-rays interact with matter.

3

2. Related Work

Figure 2.1: A schematic representation of a CT scan, displaying the three components
(X-ray source, specimen, detector) and their role in CT imaging. Taken from [Hei11].

Reiter et al. [RHS+10] published the simulation tool SimCT, which features a complete
simulation pipeline from analytical X-ray beam generation to the reconstruction of images
using an FBP algorithm. The generated X-ray spectra can be parameterized and filtered
by plates of arbitrary materials. Furthermore their tool is able to model phenomena such
as Rayleigh and Compton scattering, and takes image noise into account. Jaenisch et al.
[JBE08] created a similar tool called aRTist.

Agostinelli et al. [AAA+03] propose a more extensive framework for simulating all kinds
of particle interactions with matter. Geant4 is a collaboration between an international
team of physicists and software engineers, and can even be used to simulate large-scale
detectors such as the Large Hadron Collider.

2.2 CT Reconstruction

As already mentioned in the introduction, CT reconstruction algorithms can in general
be divided into two typical categories: analytical and iterative. Due to the recent
advancements of computational power, iterative approaches are in the center of research,
especially with technologies such as Deep Learning emerging. It is also possible to
combine steps of both categories in various permutations, and create hybrid algorithms
for CT reconstructions. Geyer et al. compiled a report on state-of-the-art iterative
techniques in 2015 [GSM+15], which are being used in healthcare facilities around the

4

2.2. CT Reconstruction

Figure 2.2: Filtered Backprojection: Acquisition of projection data from different angles.
Taken from [KH16].

globe. While the report gives a good overview on how integrating iterative reconstruction
algorithms has changed and advanced existing systems, we want to focus on more recent
research in this chapter.

We will provide some fundamental knowledge about the origins of the algorithms used
in recent publications. The most fundamental algorithm, which is still widely used for
high-precision CT reconstructions, is called the Filtered Backprojection Algorithm or
FBP [SKT+20] in short. It refers to the process of transforming acquired data from the
projection space, i.e., the detector being used, back to the image space. The filter is used
to de-blur the resulting images. A very simplified version of the FBP algorithm could
look like this:

1. Shoot parallel beams through an object into a detector. Each point on the detector
corresponds to the summation of the absorbed energy along its corresponding beam

5

2. Related Work

(Forward Projection).

2. Repeat Step 1 while rotating the detector and beams at an angle < 360°.

3. Transform the resulting detector function into the Fourier Domain (FFT).

4. Multiply the resulting fourier-transformed function with a high-pass filter.

5. Transform the resulting function back into the projection domain (IFFT).

6. Use backprojection to transform the resulting function into the image domain.

A schematic representation can be seen in Figure 2.2.The more angles are used to acquire
data, the more precise the backprojected image will be. As homogeneous areas are
sampled more densely than sharp edges and details, the resulting image would be very
blurry without the filtering steps (Steps 3 to 5). The most simplified example would
be to shoot beams through a homogeneous material, meaning that the backprojection
algorithm divides the amount of absorbed energy equally along a beam per angle. FBP
algorithms can also be used for heterogeneous materials, taking physical phenomena such
as beam hardening as well as various scattering effects into account [RHS+10]. Iterative
algorithms are still often used in combination with FBP [GSM+15].

Compared to FBP, iterative methods do not perform the transformation of the projection
space into the image space in a single step. Analytical algorithms such as FBP are known
to introduce artifacts and noise in the resulting image. By approaching the reconstructed
image in multiple steps iteratively, these artifacts can be reduced. One of the first uses of
an iterative algorithm for CT imaging was in fact one of the first uses of a reconstruction
technique for computed tomography ever. Gordon et al. [GBH70] proposed a so-called
algebraic reconstruction algorithm back in 1970. It is based on an algorithm used to
solve a system of linear equations (Kaczmarz method).

Most publications in the recent years are experimenting with Deep Learning algorithms
for CT reconstruction. Lell et al. [LK20] provide a good general overview of how such
algorithms can be used to improve medical imaging. In 2022, Khodajou et al. [KCHA22]
proposed a framework which can be used to decrease the amount of radiation patients are
exposed to, while also speeding up the process of data acquisition using parallel residual
conventional neural networks. Deep Learning Reconstruction (DLR) has proven to be
one the leading techniques for medical imaging because of these two properties of DLR
[MCG+21].

Differentiable rendering [KBM+20] allows the use of gradient-descent based algorithms
for CT reconstruction purposes, such as the ones used for convolutional neural networks
and other Deep Learning architectures. While our research does not make use of such
networks, there is definitely a lot of room for future research and advancements in this
area. Figure 2.3 shows an overview of the mentioned approaches to CT reconstruction.

6

2.3. Differentiable Rendering

Figure 2.3: Different approaches to reconstruction for CT imaging. Taken from
[WYDM20]

2.3 Differentiable Rendering

Physically-based render engines have to deal with a plethora of phenomena regarding the
interaction of light and matter. While many algorithms used to model these phenomena
are well-suited for Forward Rendering, creating a 2D image of a 3D scene, they cannot be
differentiated. Inverting this process to create an Inverse Rendering, i.e. reconstructing
the 3D scene from a 2D image, can be achieved by computing the derivatives of the
forward rendering function in respect to the scene parameters. This process is known as
Differentiable Rendering. The derivatives acquired by differentiable rendering enable the
use of optimization algorithms, such as Gradient Descent Based Algorithms. Figure 2.4
illustrates an example of a differentiable rendering pipeline. Some algorithms used in
a forward rendering pipeline would introduce discontinuities when being differentiated.

7

2. Related Work

Figure 2.4: Differential rendering pipeline. Taken from [ZJL20].

Therefore, building an inverse rendering engine with the same capabilities as conventional
forward rendering engines is a complex task and requires redesigning and -implementing
existing systems. In this section we present the differentiable render engine we used for
our research, as well as possible alternatives and other use cases.

Nimier-David et al. [NDVZJ19] proposed a render engine that was built for differentiable
rendering purposes from the ground up. By using modern programming language features
such as template-metaprogramming and support for modularity via a plugin-based design,
Mitsuba 2 is extremely versatile when it comes to its use cases and can be easily adjusted
and expanded to fit an application’s needs. The original implementation offers different
modes, which must be defined at compile-time. These properties make it well suited for
any research regarding differentiable rendering. Their publication includes information
about some of the possible use cases such as differentiable volumetric path tracing, under
which category our research is falling and was inspired by.

Also Li et al. [LADL18] introduced a general purpose differentiable renderer a year
earlier, which makes use of edge sampling to achieve its capabilities. Their implementation
includes a physically-based mode, which can also be used for modelling phenomena caused
by the interaction of light and matter. However, their algorithm assumes static scenes
with no participating media, so it was not suited for us. Furthermore, the architecture of
their proposal is not as easily configurable and adjustable as Mitsuba 2 [NDVZJ19], so it
might take more effort to start working with it for more specific applications (such as
working in the X-ray spectrum instead of with visibile light).

Weiss et al. [WW22] proposed an algorithm specifically tailored for differentiable volume
rendering. It can be applied for the same use cases as the Nimier-David et al. [NDVZJ19]
Monte-Carlo path tracing based solution for inverse volume rendering.

8

CHAPTER 3
Methodology

3.1 X-Ray Spectrum

To be able to penetrate matter without a full loss of energy, the wavelength of electromag-
netic rays has to be very short, as the energy carried by photons is inversely proportional
to it. The relationship is defined by the formula presented in Equation 3.1, where h
is Planck’s constant, c is the speed of light, λ is the wavelength and f is the resulting
electromagnetic frequency:

Figure 3.1: Part of the electromagnetic spectrum with wavelength and energy of visible
light, ultraviolet light, X-rays and gamma rays. Taken from [Shr18].

9

3. Methodology

Figure 3.2: Linear attenuation coefficients of aluminium (Z = 13, ρ = 2.694g/cm3) and
copper (Z = 29, ρ = 8.94g/cm3). Z denotes the atomic number of the element, and ρ
denotes its respective density. Taken from [RHS+10].

E = hf = h(c/λ) (3.1)

X-ray spectra usually range between 0 and 500 keV (but can also be higher, e.g. for XXL-
CT), and are categorized as ionizing radiation, meaning that photons in this spectrum
carry enough energy to detach electrons from the matter they are interacting with. The
X-ray spectrum can further be divided into soft X-rays and hard X-rays depending on
their wavelength, whereas the latter is used for X-ray and CT imaging purposes. An
overview of the spectrum compared to other spectra can be seen in Figure 3.1. Further
information about the X-ray Spectrum can be found in the work of Carmignato et al.
[CDL18].

There are three different physical phenomena that describe the interaction of X-rays
with matter. Depending on the energy carried by X-rays and the material composition
of the object they are being shot at, these phenomena occur in different probabilities.
Photoelectric absorption is the dominating effect in X-rays carrying lower energies,
while Compton scattering dominates for X-rays with high energies. Furthermore, a
material with a high atomic number is more likely to influence the effect of photoelectric
absorption, and a material with low atomic number strengthens the influence of Compton
scattering. The third phenomena is Rayleigh scattering, and it is most probable at low
atomic numbers and lower energies. More about this can be found in the SimCT paper
[RHS+10].

10

3.2. Path Tracing

3.2 Path Tracing

Path Tracing is the prevalent Monte-Carlo based method for obtaining high-precision,
physically-based renderings [PJH16]. In 1986, Kayija et al. [Kaj86] introduced the
rendering equation (as shown in Equation 3.2, taken from [PJH16]), which describes
how much light is being radiated from a particular point p on the surface of an object
towards a direction ω0. The outgoing radiation is the sum of the emitted radiance at
that point, denoted as Le(p, ω0), and the incident radiance Li(p, ω1) from all directions
on the hemisphere S2 around p scaled by the BSDF f(p, ω0, ω1) and a cosine term.

L0(p, ω0) = Le(p, ω0) +
∫

S2
f(p, ω0, ω1)Li(p, ω1)| cos θi|dω1 (3.2)

Solving this equation turned out to be very computationally expensive as the amount of
light a point in space receives is not only influenced by direct illumination, but also from
all the reflections that bounce light into its direction. Therefore different approximating
algorithms have been introduced to tackle the problem efficiently. Path Tracing algorithms
are able to solve the rendering equation along individual rays, and the higher the sampling
count of individual rays the more realistic the resulting rendering turns out to be, as
it approaches the solution of the rendering equation. Similar techniques include Ray
Tracing, Photon Mapping and Metropolis light transport. Path Tracing is also referred
to as Monte-Carlo Ray Tracing, as it is based on Ray Tracing.

A simplified algorithm would start by shooting a ray at a pixel, for each pixel in the
output image. The value of the color of the pixel is first being calculated by checking
if the ray is intersecting with an object. If yes, the variable gets populated with the
color of the object’s material, otherwise it gets populated with a value representing black.
Then, a new ray is being shot from the origin of the previous intersection, into a random
direction of the intersection’s normal hemisphere. This new ray is going through the
same steps and shooting new rays recursively. The number of times new rays are being
generated should be capped by a maximum depth parameter supplied to the algorithm.
The final color of the pixel then depends on the summation of the colors calculated
through recursion and their respective BSDFs. The implementation of shooting a new
ray from the original ray’s intersection with the object depends on the use case. While
shooting rays into a random direction might be sufficient for diffuse materials, specular
material might need a more sophisticated calculation. There are also various ways of
improving the number of rays needed to bounce off from incoming rays’ origins, such
as Russian Roulette Algorithms [PJH16]. As we can not send an infinite number of new
rays from new origins to calculate an unbiased result, Path Tracing algorithms need some
mechanism to determine the termination of this procedure. Instead of using a maximum
depth value, or a certain threshold, Russian Roullette algorithms randomly cancel out
paths that are contributing less to the final result with a higher probability than those
paths that contribute a lot to the result. The implementation of the BRDF calculation is
beyond the scope of this section, it is used to calculate light added by reflectance.

11

3. Methodology

Figure 3.3: A schematic representation of a Ray Tracing Algorithm. For each pixel in the
output image, a ray is being shot into the scene, which either intersects with an object or
does not. The color of the pixel then depends on the intersecting object’s material, the
light illuminating it, and rays of reflection/refraction reaching the intersection. Taken
from [SML88].

Paths can generally be traced in both directions, from the light source to the camera and
vice versa, with both methods having their pros and cons, e.g. backwards-tracing (from
camera to light source) has problems with properly calculating bright pixels caused by
caustics. This is why a combination of both is used in most modern algorithms, and it is
therefore called Bidirectional Path Tracing.

More about Path Tracing and Physically Based Rendering Techniques can be found in
Pharr et al.’s work [PJH16]. A simple schematic overview of the algorithm is presented
in Figure 3.3.

3.3 Participating Media
In the real world, photons are travelling through media such as air or water before
they land on surfaces. These media impact the travelling paths of light by scattering
photons into different directions. To achieve photo-realistic renderings, the effect of
participating media has to be taken into account using path tracing algorithms. It would
be computationally very expensive to model the effect of each individual particle (that
could interact with light) of a medium through equations. Instead, calculations are made

12

3.4. Volume Rendering

Figure 3.4: An illustration and the underlying equations for the different types of
interactions a photon can have with the medium. Taken from [Jar08].

considering the probabilities of light interacting with such a medium. As illustrated in
Figure 3.4, interacting with participating media can result in different phenomena. The
probability of the energy of a photon being absorbed by the medium is modelled by
the absorption coefficient, denoted as σα, while the probability of a scattering event is
denoted as σs and called scattering coefficient. Summing up these coefficients results in
the extinction coefficient, σϵ = σα + σs, which describes how much the incident radiance
L(x→ −→ω) is being weakened through travelling through the medium.

A more detailed description can be found in the work of Jarosz et al. [Jar08].

3.4 Volume Rendering
Rendering scenes that are partly composed of participating media requires calcula-
tions that take the four interaction types (absorption, emission, out-scattering, and
in-scattering) into account. Therefore, a volume rendering equation, also called Radiative
Transfer Function has been proposed by Chandrasekhar et al. [Cha13]. In simple terms,
the equation states that the radiance on a path is the summation of the surface, in-scatter
and emitted radiance minus the radiance that has been absorbed and out-scattered.
Solving this equation amounts to an equally sized body of work as solving the traditional
rendering equation. The radiative transfer function is computationally harder to solve,
as it incorporates a lot more calculations introduced by the various interactions.

3.5 Differentiable Rendering
Differentiable Rendering is a fairly recent invention used to solve inverse problems. Instead
of generating a 2D image from a 3D scene, differentiable rendering is used to invert
this pipeline and optimize 3D scene parameters from reference images. This is done by
computing the gradients of the output image over some scalar loss function in respect
to the scene parameters, as shown in Equation 3.3. In the formula, π represents the
parameter vector of our scene, L a scalar loss function (e.g., mean squared error of
the image and a reference, as used in our research), and Ii(π) describes the pixel value

13

3. Methodology

Figure 3.5: Differentiable Rendering pipelines. Taken from [KBM+20].

at position i in respect to our scene parameters. The gradients for the MSE can be
calculated as shown in Equation 3.4, whereas Î denotes the reference image.

∂

∂π
L(I(π)) =

∑
i

∂L

∂Ii(π)
∂Ii(π)

∂π
(3.3)

∑
i

2(Ii(π)− Îi(π))∂Ii(π)
∂π

(3.4)

3D scenes can have different types of representations, e.g., participating media is often
described with voxels, while 3D meshes are made of triangulated surfaces. Therefore,
different algorithms for inverse rendering are required. Designs of differentiable rendering
algorithms have to take each step of the underlying rendering functions into account, as
computing gradients in respect to scene parameters means integrating over the whole
rendering function. If a step of the complex rendering function is discontinuous when
calculating its derivatives, the step has to be overcome by some sort of approximation
that produces a continuous function. Approximations can be used in the forward- or
backward pass of the rendering pipeline. Furthermore, an image can consist of a high
number of pixels and the underlying scene that generated the image can consist of a high
number of scene parameters. The resulting gradient matrix easily explodes in regard
to how many entries it is holding, producing memory issues in trying to compute the
gradients of the render function. Improvements on this issue have been made by Nimier

14

3.6. Differentiable Rendering for CT Reconstruction

et al. [NDSRJ20] by using radiative back-propagation. A reasonable initialization of the
to-be-optimized parameter can further help to accelerate the performance and precision of
the algorithm. Possible architectures of a differentiable rendering pipeline are illustrated
in Figure 3.5. A more extensive description and mathematical insights can be found in
the work of Zhao et al. [ZJL20].

3.6 Differentiable Rendering for CT Reconstruction
The task to reconstruct volumetric data of a given object via CT imaging can be
formulated as an inverse rendering problem. Given a scene with a detector, volumetric
object, and camera we can differentiate the resulting render function in respect to the
absorption coefficient matrix of the volumetric object (denoted as π0), as described in
Equation 3.5 (as further detailed in the work of Zhao et al. [ZJL20]).

∂

∂π0

∫∫
f(x, y; π) dxdy = ∂

∂π0
Ii (3.5)

To achieve this, we first generate a reference image (Ground Truth), which is needed
to compute a loss-function that can be properly back-propagated. This can be done by
either synthesizing the reference image externally with the same camera settings as used
in the scene setup, or by forward rendering the scene initially. In practice though, the
goal would be to use reference images acquired through measurements obtained from
a CT scan. In the next step, we initialize the absorption coefficient parameter of our
volumetric object with a matrix holding constant entries (such as 0). We then iteratively
render the new scene, and compare the resulting image with our reference by computing
the Mean Squared Error using the squared Euclidean distances of the images. The loss
function is then being back-propagated to our input parameters, and finally ADAM
[KB15], a method for stochastic optimization, is used for optimizing the absorption
coefficients using the acquired gradients from our image. These steps are being repeated
with the newly optimized scene parameters until convergence is reached, meaning that
our optimization algorithm does not produce any further changes in regards to the scene
parameters. As a single-view reconstruction of a 3-dimensional object is insufficient for
capturing the volumetric properties correctly, we proceed to rotate the X-ray source and
detector around our specimen, and initialize our absorption coefficient matrix with the
resulting values from the previous optimization loop, and finally repeat the optimization
steps from a different angle.

15

CHAPTER 4
Implementation

We implemented our application using the Mitsuba 2 [NDVZJ19] framework. However,
our results should be obtainable with any differential rendering engine, provided that the
exact same parameters are used. The underlying rendering and optimization implemen-
tation with another rendering engine could differ in terms of precision and performance.
Furthermore, our scene setup and X-ray rendering is based on the work of Hochhauser
et al. [Hoc22]. As our scene setup slightly differs as it was expanded for rendering
participating media, we will still still discuss it in more detail.

Figure 4.1: Usual CT-simulation scene setup. The X-rays are emitted through the use of
a cone beam, the object is being rotated on a table and the detector is capturing the
resulting energy on its flat surface. Taken from [RHS+10].

17

4. Implementation

4.1 Scene Setup
A CT simulation scene usually consists of at least these three elements: X-ray source
(emitter), object, and detector (projection plane). Our implementation follows this model
by making use of a reciprocal setup. While the camera in most scenes is typically used
similar to a detector, it is acting as our X-ray source. The detector we use is implemented
as a rectangular area light. The rendered image is then generated from the data on the
detector. As our rays are following the rules of Helmholtz reciprocity [VH67], it does not
matter if we follow the rays from the camera or the detector.

4.1.1 Scene parameters

Table 4.1 describes the parameters we used in our setup for rendering a scene. All
additional values that are required when computing transform matrices (e.g., for rotating
the camera around the object origin) can be derived from this table, e.g., the object
distance from the origin is simply SDD - SOD.

Param Value[m] Description
SOD 0.02 Object distance from origin
SDD 0.25 Camera distance from origin
FD 0.25 Focus distance of camera
FC 0.25 + 10−5 Far clip of camera
DS 0.4096× 0.5 Detector size/scale
OS 0.1 Object size/scale

Table 4.1: Scene Parameters used for rendering the scene.

4.1.2 Medium parameters

The material of our medium is described by its absorption coefficients per voxel. As
Mitsuba 2 only accepts values between 0 and 1 for this parameter, we had to pass a scale
to our material for setting up the scene, which Mitsuba 2 then reapplies before rendering.

4.2 X-ray Spectrum
For the generation of the X-ray spectrum we used Mitsuba 2’s internal implementation
and data acquired by Hochhauser et al. [Hoc22], which relied on data from the authors
of SimCT [RHS+10].

4.3 Detector
The detector implementation is also taken from Hochhauser et al. [Hoc22]. The central
idea is to use Path Tracing for generating a spectral response for each pixel on the camera,

18

4.4. Reference Creation

and furthermore converting this data to a grey-scale image. As generating images in the
X-ray spectrum is a central part of the work of Hochhauser et al. [Hoc22], more can be
read about the implementation and algorithm in the publication.

4.4 Reference Creation

To create our participating media, we created a file describing our object as a 16x16x16
voxel grid, with a fixed value of 10−4 assigned to each voxel containing object data, which
is corresponding to its absorption coefficient. A value of one would mean fully absorbing
the energy at this voxel, zero means that no energy is absorbed at this voxel. The steps
we took to generate a voxel-based representation from an .obj file are as follows:

1. Generate a bounding box fully encapsulating the object around its outer edges.

2. Subdivide this bounding box into 16 same-sized boxes, creating a 16x16x16 grid.

3. For each box in the grid (corresponding to a voxel), check if surface data is present.

4. If surface data is present, assign a non-zero value to this voxel, otherwise assign
zero.

We automated this process using the binVox 3D mesh voxelizer [NT03] [Min19]. The
resulting binvox file was then converted to Mitsuba 2’s .vol file format using a conversion
script. This volume can then be forward rendered and the rendered image can furthermore
be used as a reference image from each captured angle before starting the optimization
process.

4.5 Rendering Parameters

Mitsuba 2 has a plethora of options to choose from regarding integrators and samplers.
Integrators refer to rendering-techniques, such as Path Tracing. For our implementation
only two of the available integrators are relevant: the volpath and volpathmis integrator.
Both are volumetric path tracers, but the volpathmis integrator additionally uses a
method called Multiple Importance Sampling [VG95]. Both of those integrators are
well-suited for our application, but the volpathmis integrator should in theory produce
less noise in the outcoming image, which is why we went with it. The sampler is being
queried by the integrator to evaluate on which paths the rays are travelling through the
scene. Mitsuba 2 has five different samplers available: independent, stratified, multi-jitter,
orthogonal and ldsampler. For our application we chose the independent Sampler and
went with its default sample count of four. As going into more detail about samplers and
integrators would go beyond the scope of this thesis, more about them can be read in
the official Mitsuba 2 documentation [Mit].

19

4. Implementation

4.6 ADAM Optimization
The ADAM Optimization algorithm we use in our implementation to minimize the loss
function was proposed by Kingma et al. [KB15] and is since then being widely used
instead of the classical stochastic gradient descent algorithm. The algorithm is especially
very useful in computer graphics, as it deals well with noisy and sparse gradients compared
to alternative methods. Four hyperparameters can be set when initializing an ADAM
optimizer. First, there is the learning rate, which describes how big the amount of change
in the updated parameter per epoch is. Choosing this parameter can be a tricky task,
as a parameter that is set too low will slow down the process made per optimization
step, and a learning rate that is too high might lead to divergence. We experimentally
initialized this value with a value of 0.002, which lead to a steep decrease in our loss
function. Another set of parameters, β1 and β2, control the exponential averaging of
first and second order gradient moments. The fourth hyperparameter ϵ controls the
exponential averaging of second order gradient moments. We initialized these parameters
as recommended by the authors. A full overview of our chosen parameters can be seen in
Table 4.2.

LR 0.002
β1 0.9
β2 0.99
ϵ 1e−8

Table 4.2: ADAM hyperparameters used for optimizing our scene parameters.

4.7 Reconstruction
The following Algorithm 4.1 outlines our implementation for the reconstruction. We first
have to define the number of 45° rotations (Nrot), the number of optimization iterations
per rotation (Niter) and our scene parameters (π). The scene parameters, including the
current rotation, are being used to set up our scene initially. We then create a reference
image by forward rendering our scene. Furthermore, we update the scene parameters with
a non-absorbing matrix (σupdate) in the first iteration. We then start our optimization
loop, and update the matrix according to our back-propagated gradients of our loss
function. After the loop ends, we use the acquired absorption matrix as starting point
for our next optimization/rotation cycle.

20

4.7. Reconstruction

Algorithm 4.1: Reconstruction Algorithm
Input: Nrot ≥ 1, Niter ≥ 1, π

1 for i← 0 to Nrot − 1 do
2 rotation = (i ∗ 45.0) mod 360
3 scene← loadScene(π, rotation);
4 imageref = render(scene); // render rerence image
5 σref = scene.volume.σ.data
6 if σupdate == null then
7 σupdate = 0.0 ∗ σref.length(); // initialize non-absorbing volume in first run
8 end
9 updateV olumeParameter(scene, σupdate);

10 for j ← 0 to Niter − 1 do
11 image = renderDifferential(scene);
12 objective = MSE(image, imageref) // calculate loss function
13 backPropagate(objective);
14 gradientStep();
15 end
16 σupdate = scene.volume.σ.data // update volume with optimized values
17 end

21

CHAPTER 5
Evaluation

5.1 Specifications

For our optimization algorithm, we used the following specifcations:

OS Windows 10 Pro
GPU Nvidia RTX 3090
GPU Memory 24 GB
CPU AMD Ryzen 9 3950X
RAM 32 GB
Differential Renderer Mitsuba 2 Fork
Mitsuba 2 Base Version master @f4bc83c68f

Table 5.1: Specifications used for our reconstruction

When starting this thesis, we were using an Nvidia RTX 2060 graphics card instead,
but quickly discovered, that Mitsuba 2’s autodifferential volume rendering needs a huge
amount of GPU memory. This memory issues persisted when we tried to use higher
sample counts and resolutions, which is why we had to settle on a resolution of 256x256
pixels and a sample count of ten for all of our renderings.

5.2 Results

In the following section we will showcase our results in the form of diagrams and rendered
images. We will compare the reference images with the optimized outcome images after
five full camera and sensor rotations around our specimen. Furthermore we will display
the efficiency and performance of our algorithm.

23

5. Evaluation

5.2.1 Optimized Parameter

Figure 5.1 is showing 3D plots of the optimized absorption coefficient parameter of our
volume. After the first iteration, our medium is very cloudy and computing the gradients
of a single view was not enough to capture the geometric properties of the volume.
Figures 5.2a and 5.2b are showing the front view of the starting position and after five
full rotations.

It is observable that our two main goals, approximating the 3D geometry and optimizing
the absorption coefficients (which where initialized with a constant value of 0.001 in the
reference image), are being reached after a sufficient number of iterations. What can
furthermore be observed are the noise clouds around the volume, which are most likely
being caused by the resulting noise of our forward rendered reference images. There
are also some undesired clouds around the edges, which could be caused by Mitsuba 2’s
interpolation algorithm, or also by the noise in the reference images.

5.2.2 Renderings

Figure 5.3 is showcasing the reference images of each of the 8 rotation angles (45° steps)
in comparison with our optimized output images for each of the angles. Other than very
minor differences in the noise profiles of the images, the images look nearly identical.
Especially the geometry is captured well by our optimization. Figure 5.4 is showing the
differences in the absorption matrix and noise profile with more details.

5.2.3 Loss Function

Figure 5.5 is showing the development of the MSE (loss function) during our reconstruction.
The first full 360° rotation has descending spikes whenever starting a new 45°-rotation,
as the full geometry of our specimen is not known until the completion of a full rotation.
After the first full rotation, it can be observed that our loss function is starting to
converge around the 0.0010 mark of the MSE. Note that this diagram is omitting runaway
values that are extremely small (< 0.0001) and occur only once at the start of each new
45°-rotation after a full 360°-rotation.

5.2.4 Benchmarks

Table 5.2 is showing the maximum, minimum and mean time needed for our various steps
in the reconstruction. The total time for reconstruction could be reduced by lowering the
number of full 360°-rotations of our camera and sensors around the object, as the data
shown in Figure 5.5 is indicating that a lower number could be sufficient for a similar
reconstruction outcome.

5.2.5 Memory Usage

We tracked the GPU memory usage of our application with Nvidia NSight Systems.
It can be observed that auto-differential renderings take up more memory than usual

24

5.2. Results

(a) Starting Position (b) Rotation 1

(c) Rotation 2 (d) Rotation 3

(e) Rotation 4 (f)

Figure 5.1: A simple volume rendering visualization of the optimized absorption coefficient
matrix. a represents the volume grid after the first optimization iteration and effectively
shows how optimizing the volume data from a single view/angle is not sufficient for a
correct approximation. The colors of the voxels correspond to the absorption coefficient
that was optimized at that voxel, as seen in f

.

25

5. Evaluation

(a) Starting Position

(b) Rotation 40 (45° rotations)

Figure 5.2: Front-view of the first (a) and last (b) optimization iteration.
.

26

5.2. Results

(a) 0° (b) 45°

(c) 90° (d) 135°

(e) 180° (f) 225°

(g) 270° (h) 315°

Figure 5.3: Reference images (left) and optimized output images (right) of all the different
angles (45° steps) used in our reconstruction algorithm.

.

27

5. Evaluation

(a) Reference

(b) Optimization Output

Figure 5.4: Reference image (a) and optimized output image (b) of the front view (0°) of
our specimen. The red and blue circle are highlighting differences in the absorption/noise
profile of the two images.

.

28

5.2. Results

Figure 5.5: Plot of the MSE (loss function) development during our reconstruction. The
x-axis is showing each optimization iteration step. As we are optimizing in 40 iterations
during one 45°-rotation, and terminate the software after 40 45°-rotations, there are 1600
iterations in total. The spikes during the first full 360°-rotations are a result of wrong
geometric assumptions of our optimizer due to not having seen the specimen from each
angle yet.

max Optimization 37.693 s
min Optimization 32.706 s
mean Optimization 35.161 s
max 45°-Rotation 25.129 min
min 45°-Rotation 21.804 min
mean 45°-Rotation 23.441 min
Total 15.627 h

Table 5.2: Benchmark of our algorithm

forward renderings using the Mitsuba 2-based engine. The memory usage stays constant
but almost at a maximum (> 90%) when optimizing. Only four of the 32 CPU kernels
where occupied running our reconstruction.

29

CHAPTER 6
Conclusions

In summary, our implementation of a differentiable rendering algorithm for CT reconstruc-
tion produces a reliable proof-of-concept for future work in this area. The acquisition of
volumetric data using only 2D images opens a lot of new possibilities in various fields, and
differentiable rendering could contribute to the efficiency of iterative CT-reconstruction
methods in the future. Compared to a lot of recent research that involves deep learning
in the iterative reconstruction pipelines, our algorithm works without any pre-trained
models and thanks to the emergence of fully auto-differentiable render engines such as
Mitsuba 2, setting up the algorithm is pretty straightforward once a scene is configured.

Shortcomings in our application result partly from Mitsuba 2’s high memory usage, which
limits our renderings to a low sample count, therefore producing noisy images, making
the optimization process less efficient and accurate. The reconstruction presented in this
publication is also slow, as it is taking several hours to produce reliable outcomes. Ideas
for possible improvements are presented in the next chapter.

31

CHAPTER 7
Future Work

Future work could improve on several sections of our reconstruction algorithm. To
improve the performance of our application, optimizing the hyper-parameter fittings for
ADAM as well as determining a sensible determination of the algorithm according to the
development of the loss-function convergence could be considered.

Furthermore, a new version of Mitsuba was released [JSRV22], which is supposed to
solve a lot of bugs and make further improvements in the engine. Especially the memory
issues, which let us produce only images with a small resolution and sample count, are
supposed to have been improved by this release.

MSE as a loss function could also be exchanged for a more sophisticated approach, like
neural networks. As a lot of research is being developed in the recent years in Deep
Learning CT reconstruction, combining the developments of differential rendering for
path tracing application and DL-reconstruction could produce good results.

33

List of Figures

2.1 A schematic representation of a CT scan, displaying the three components
(X-ray source, specimen, detector) and their role in CT imaging. Taken from
[Hei11]. 4

2.2 Filtered Backprojection: Acquisition of projection data from different angles.
Taken from [KH16]. 5

2.3 Different approaches to reconstruction for CT imaging. Taken from [WYDM20] 7
2.4 Differential rendering pipeline. Taken from [ZJL20]. 8

3.1 Part of the electromagnetic spectrum with wavelength and energy of visible
light, ultraviolet light, X-rays and gamma rays. Taken from [Shr18]. . . . 9

3.2 Linear attenuation coefficients of aluminium (Z = 13, ρ = 2.694g/cm3) and
copper (Z = 29, ρ = 8.94g/cm3). Z denotes the atomic number of the element,
and ρ denotes its respective density. Taken from [RHS+10]. 10

3.3 A schematic representation of a Ray Tracing Algorithm. For each pixel in the
output image, a ray is being shot into the scene, which either intersects with
an object or does not. The color of the pixel then depends on the intersecting
object’s material, the light illuminating it, and rays of reflection/refraction
reaching the intersection. Taken from [SML88]. 12

3.4 An illustration and the underlying equations for the different types of interac-
tions a photon can have with the medium. Taken from [Jar08]. 13

3.5 Differentiable Rendering pipelines. Taken from [KBM+20]. 14

4.1 Usual CT-simulation scene setup. The X-rays are emitted through the use
of a cone beam, the object is being rotated on a table and the detector is
capturing the resulting energy on its flat surface. Taken from [RHS+10]. . 17

5.1 A simple volume rendering visualization of the optimized absorption coefficient
matrix. a represents the volume grid after the first optimization iteration and
effectively shows how optimizing the volume data from a single view/angle is
not sufficient for a correct approximation. The colors of the voxels correspond
to the absorption coefficient that was optimized at that voxel, as seen in f 25

5.2 Front-view of the first (a) and last (b) optimization iteration. 26
5.3 Reference images (left) and optimized output images (right) of all the different

angles (45° steps) used in our reconstruction algorithm. 27

35

5.4 Reference image (a) and optimized output image (b) of the front view (0°)
of our specimen. The red and blue circle are highlighting differences in the
absorption/noise profile of the two images. 28

5.5 Plot of the MSE (loss function) development during our reconstruction. The
x-axis is showing each optimization iteration step. As we are optimizing in
40 iterations during one 45°-rotation, and terminate the software after 40
45°-rotations, there are 1600 iterations in total. The spikes during the first full
360°-rotations are a result of wrong geometric assumptions of our optimizer
due to not having seen the specimen from each angle yet. 29

36

List of Tables

4.1 Scene Parameters used for rendering the scene. 18
4.2 ADAM hyperparameters used for optimizing our scene parameters. 20

5.1 Specifications used for our reconstruction 23
5.2 Benchmark of our algorithm . 29

37

List of Algorithms

4.1 Reconstruction Algorithm . 21

39

Bibliography

[AAA+03] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce,
M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba,
J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma,
R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua,
G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fe-
sefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Gi-
annitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia
Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli,
P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen,
A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach,
N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent,
A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna,
T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo,
S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Fre-
itas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen,
T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech,
J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo,
G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko,
D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka,
E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban,
P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch,
T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschi-
esche. Geant4—a simulation toolkit. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 506(3):250–303, 2003.

[CDL18] Simone Carmignato, Wim Dewulf, and Richard Leach, editors. Industrial
X-Ray Computed Tomography. Springer International Publishing, 1st edition,
2018.

[Cha13] Subrahmanyan Chandrasekhar. Radiative transfer. Courier Corporation,
2013.

41

[FB11] Dominik Fleischmann and F Edward Boas. Computed tomography—old
ideas and new technology. European radiology, 21(3):510–517, 2011.

[GBH70] Richard Gordon, Robert Bender, and Gabor T Herman. Algebraic recon-
struction techniques (art) for three-dimensional electron microscopy and
x-ray photography. Journal of theoretical Biology, 29(3):471–481, 1970.

[GCG+20] Purvi Goel, Loudon Cohen, James Guesman, Vikas Thamizharasan, James
Tompkin, and Daniel Ritchie. Shape from tracing: Towards reconstructing
3d object geometry and svbrdf material from images via differentiable path
tracing. In 2020 International Conference on 3D Vision (3DV), pages
1186–1195. IEEE, 2020.

[GSM+15] Lucas L Geyer, U Joseph Schoepf, Felix G Meinel, John W Nance, Jr, Gorka
Bastarrika, Jonathon A Leipsic, Narinder S Paul, Marco Rengo, Andrea
Laghi, and Carlo N DeCecco. State of the art: Iterative CT reconstruction
techniques. Radiology, 276(2):339–357, aug 2015.

[Hei11] Theodore J Heindel. A review of x-ray flow visualization with applications
to multiphase flows. Journal of Fluids Engineering, 133(7), 2011.

[Hoc22] Philip Hochhauser. X-ray Path Tracing for CT Imaging, 2022.

[Jar08] Wojciech Jarosz. Efficient Monte Carlo methods for light transport in
scattering media. University of California, San Diego, 2008.

[JBE08] Gerd-Rüdiger Jaenisch, Carsten Bellon, and Uwe Ewert. artist–analytical
rt inspection simulation tool for industrial application. In Proceedings of
the 17th World Conference on Non-Destructive Testing, Shanghai, China,
International Committee on NDT, CDrom paper, volume 64, 2008.

[JSRV22] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. Dr. jit:
a just-in-time compiler for differentiable rendering. ACM Transactions on
Graphics (TOG), 41(4):1–19, 2022.

[Kaj86] James T Kajiya. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pages 143–150,
1986.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

[KBM+20] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka,
Wadim Kehl, and Adrien Gaidon. Differentiable Rendering: A Survey. arXiv
e-prints, page arXiv:2006.12057, June 2020.

42

[KCHA22] H Khodajou-Chokami, SA Hosseini, and MR Ay. Pars-net: a novel deep
learning framework using parallel residual conventional neural networks for
sparse-view ct reconstruction. Journal of Instrumentation, 17(02):P02011,
2022.

[KH16] Ranjith Kumar and Stephane Hans. Filtered-back projection algorithm on
computed tomography (ct) scan. 2016.

[LADL18] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differen-
tiable monte carlo ray tracing through edge sampling. ACM Transactions
on Graphics (TOG), 37(6):1–11, 2018.

[LK20] Michael M Lell and Marc Kachelrieß. Recent and upcoming technological
developments in computed tomography: high speed, low dose, deep learning,
multienergy. Investigative radiology, 55(1):8–19, 2020.

[LWA+15] Michael M Lell, Joachim E Wildberger, Hatem Alkadhi, John Damilakis,
and Marc Kachelriess. Evolution in computed tomography: the battle for
speed and dose. Investigative radiology, 50(9):629–644, 2015.

[MCG+21] CM McLeavy, MH Chunara, RJ Gravell, A Rauf, A Cushnie, C Staley
Talbot, and RM Hawkins. The future of ct: deep learning reconstruction.
Clinical radiology, 76(6):407–415, 2021.

[Min19] Patrick Min. binvox. http://www.patrickmin.com/binvox or
https://www.google.com/search?q=binvox, 2004 - 2019. Accessed:
2022-09-01.

[Mit] Mitsuba 2 documentation. https://mitsuba2.readthedocs.io/en/
latest/generated/plugins.html#integrators. Accessed: 2022-
09-16.

[NDSRJ20] Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob.
Radiative backpropagation: an adjoint method for lightning-fast differen-
tiable rendering. ACM Transactions on Graphics (TOG), 39(4):146–1, 2020.

[NDVZJ19] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mit-
suba 2: A retargetable forward and inverse renderer. ACM Transactions on
Graphics (TOG), 38(6):1–17, 2019.

[NT03] Fakir S. Nooruddin and Greg Turk. Simplification and repair of polygonal
models using volumetric techniques. IEEE Transactions on Visualization
and Computer Graphics, 9(2):191–205, 2003.

[PJH16] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

43

http://www.patrickmin.com/binvox
https://www.google.com/search?q=binvox
https://mitsuba2.readthedocs.io/en/latest/generated/plugins.html#integrators
https://mitsuba2.readthedocs.io/en/latest/generated/plugins.html#integrators

[RHS+10] Michael Reiter, Christoph Heinzl, Dietmar Salaberger, Daniel Weiss, and
Johann Kastner. Study on parameter variation of an industrial computed
tomography simulation tool concerning dimensional measurement deviations.
In 10th European Conference on Non-Destructive Testing, Moscow, Russia,
2010.

[Shr18] Shreetu Shrestha. Methylammonium Lead Iodide Perovskite for Direct X-ray
Detection. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany),
2018.

[SKT+20] R Schofield, L King, U Tayal, I Castellano, J Stirrup, F Pontana, James
Earls, and E Nicol. Image reconstruction: Part 1–understanding filtered
back projection, noise and image acquisition. Journal of cardiovascular
computed tomography, 14(3):219–225, 2020.

[SML88] Alfred A. Schmitt, Heinrich Müller, and Wolfgang Leister. Ray tracing
algorithms — theory and practice. 1988.

[Sti18] Wolfram Stiller. Basics of iterative reconstruction methods in computed
tomography: a vendor-independent overview. European journal of radiology,
109:147–154, 2018.

[VG95] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques
for monte carlo rendering. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 419–428, 1995.

[VH67] Hermann Von Helmholtz. Handbuch der physiologischen Optik: mit 213 in
den Text eingedruckten Holzschnitten und 11 Tafeln, volume 9. Voss, 1867.

[WN19] Martin J Willemink and Peter B Noël. The evolution of image reconstruction
for ct—from filtered back projection to artificial intelligence. European
radiology, 29(5):2185–2195, 2019.

[WW22] Sebastian Weiss and Rüdiger Westermann. Differentiable direct volume
rendering. IEEE Transactions on Visualization and Computer Graphics,
28(1):562–572, 2022.

[WYDM20] Ge Wang, Jong Chul Ye, and Bruno De Man. Deep learning for tomographic
image reconstruction. Nature Machine Intelligence, 2(12):737–748, 2020.

[ZDDZ21] Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. Antithetic
sampling for monte carlo differentiable rendering. ACM Transactions on
Graphics (TOG), 40(4):1–12, 2021.

[ZJL20] Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. Physics-based differentiable
rendering: from theory to implementation. In ACM siggraph 2020 courses,
pages 1–30. 2020.

44

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Computed Tomography Simulation
	CT Reconstruction
	Differentiable Rendering

	Methodology
	X-Ray Spectrum
	Path Tracing
	Participating Media
	Volume Rendering
	Differentiable Rendering
	Differentiable Rendering for CT Reconstruction

	Implementation
	Scene Setup
	X-ray Spectrum
	Detector
	Reference Creation
	Rendering Parameters
	ADAM Optimization
	Reconstruction

	Evaluation
	Specifications
	Results

	Conclusions
	Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

